

Friday 1 June 2012 – Morning

A2 GCE MATHEMATICS

4727 Further Pure Mathematics 3

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4727
- List of Formulae (MF1) Other materials required:

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Scientific or graphical calculator

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- 1 The plane *p* has equation $\mathbf{r} \cdot (\mathbf{i} 3\mathbf{j} + 4\mathbf{k}) = 4$ and the line l_1 has equation $\mathbf{r} = 2\mathbf{j} \mathbf{k} + t(3\mathbf{i} + \mathbf{j} + 2\mathbf{k})$. The line l_2 is parallel to *p* and perpendicular to l_1 , and passes through the point with position vector $\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$. Find the equation of l_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [4]
- 2 (i) Solve the equation $z^4 = 2(1 + i\sqrt{3})$, giving the roots exactly in the form $r(\cos\theta + i\sin\theta)$, where r > 0 and $0 \le \theta < 2\pi$. [5]
 - (ii) Sketch an Argand diagram to show the lines from the origin to the point representing $2(1 + i\sqrt{3})$ and from the origin to the points which represent the roots of the equation in part (i). [3]
- **3** Find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y\cot x = 2x$$

[9]

[1]

for which y = 2 when $x = \frac{1}{6}\pi$. Give your answer in the form y = f(x).

4 The elements *a*, *b*, *c*, *d* are combined according to the operation table below, to form a group *G* of order 4.

	a	b	С	d
a	b	а	d	С
b	a	b	С	d
С	d	С	а	b
d	c	d	b	а

Group G is isomorphic **either** to the multiplicative group $H = \{e, r, r^2, r^3\}$ or to the multiplicative group $K = \{e, p, q, pq\}$. It is given that $r^4 = e$ in group H and that $p^2 = q^2 = e$ in group K, where e denotes the identity in each group.

- (i) Write down the operation tables for *H* and *K*. [4]
- (ii) State the identity element of G.
- (iii) Demonstrate the isomorphism between G and either H or K by listing how the elements of G correspond to the elements of the other group. If the correspondence can be shown in more than one way, list the alternative correspondence(s).

(i) By expressing $\sin \theta$ and $\cos \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, prove that 5

$$\sin^3\theta\cos^2\theta \equiv -\frac{1}{16}(\sin 5\theta - \sin 3\theta - 2\sin \theta).$$
 [6]

(ii) Hence show that all the roots of the equation

$$\sin 5\theta = \sin 3\theta + 2\,\sin\theta$$

are of the form $\theta = \frac{n\pi}{k}$, where *n* is any integer and *k* is to be determined. [3]

6 The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} = 12\mathrm{e}^{2x}$$

(i) Find the general solution of the differential equation.

1.

- (ii) It is given that the curve which represents a particular solution of the differential equation has gradient 6 when x = 0, and approximates to $y = e^{2x}$ when x is large and positive. Find the equation of the curve. [4]
- 7 With respect to the origin O, the position vectors of the points U, V and W are \mathbf{u} , \mathbf{v} and \mathbf{w} respectively. The mid-points of the sides VW, WU and UV of the triangle UVW are M, N and P respectively.

(i) Show that
$$\overrightarrow{UM} = \frac{1}{2}(\mathbf{v} + \mathbf{w} - 2\mathbf{u}).$$
 [2]

- (ii) Verify that the point G with position vector $\frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w})$ lies on UM, and deduce that the lines UM, VN and WP intersect at G. [5]
- (iii) Write down, in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, an equation of the line through G which is perpendicular to the plane UVW. (It is not necessary to simplify the expression for **b**.) [2]

/ \

(iv) It is now given that
$$\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Find the perpendicular distance from *O* to the plane *UVW*. [3]

8 The set *M* of matrices
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, where *a*, *b*, *c* and *d* are real and $ad - bc = 1$, forms a group (*M*, ×) under matrix multiplication. *R* denotes the set of all matrices $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

- (i) Prove that (R, \times) is a subgroup of (M, \times) .
- (ii) By considering geometrical transformations in the x-y plane, find a subgroup of (R, \times) of order 6. Give the elements of this subgroup in exact numerical form. [5]

[6]

[6]

b find vector product of directions lation of vector product Allow 1 error
Juation. FT from b
on from l_2 perpendicular to normal of plane on from l_2 perpendicular to l_1
uation. FT. from b Must show " r ="
$\frac{1}{3}\pi \text{ soi}$ $\arg(z^{4}) \text{ by 4}$ $\operatorname{rect} \text{ values of } k$ $\operatorname{es of } k \text{ and } no \text{ extras. Ignore values outside}$ $\operatorname{for second A1, must be}$ $\operatorname{in correct form.}$ $\operatorname{Don't accept 1.41 or}$ $\frac{4}{\sqrt{4}}$ $\frac{1}{4}$
t eq atic atic atic t = q r = 1 r = 1 r = 1 r = 1 r = 1

4727

	Question		Answer	Marks	Guidance		
2	(ii)		Re	B1 B1 B1	For roots forming a square, centre <i>O</i> , on equal-scale axes. For z^4 and only one root in first quadrant with arguments in ratio approximately 3:1 For $ z^4 : z \approx 4:\sqrt{2}$ (allow (2,4):1)	Must be roots distinct from z^4 Penalise once use of points not lines For all four roots	
				[3]			
3			Integrating factor = $e^{\int \cot x dx} = e^{\ln \sin x} = \sin x$ $\Rightarrow \frac{d}{dx}(y \sin x) = 2x \sin x$	M1 A1 M1	For IF = $e^{\pm \ln \sin x} OR e^{\pm \ln \cos x}$ For simplified IF For $\frac{d}{dx}(y.\text{their IF}) = 2x.\text{their IF}$		
			$\Rightarrow y \sin x = -2x \cos x + \int 2 \cos x dx$	M1*	For attempt to integrate RHS using parts for $\int x \begin{cases} \sin x \\ \cos x \end{cases} dx$ For correct RHS 1st stage	(Must use $u = (2)x$)	
			$\Rightarrow y \sin x = -2x \cos x + 2 \sin x (+c)$	A1	oe		
			$\left(\frac{1}{6}\pi,2\right) \Longrightarrow c = \frac{1}{6}\pi\sqrt{3}$	M1dep *	For substituting $\left(\frac{1}{6}\pi, 2\right)$ into their GS (with <i>c</i>)	c = 0.907	
			$\Rightarrow y = -2x \cot x + 2 + \frac{1}{6}\pi\sqrt{3} \operatorname{cosec} x$	A1 FT A1	For correctly finding c (FT from GS) For correct solution AEF of standard notation $y = f(x)$		
				[9]			

C	Juestic	n	Answer	Marks	Guidance	
4	(i)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	For correct table for <i>H</i>	
			$\begin{vmatrix} r & r & r^2 & r^3 & e & p & p & e & pq & q \\ r & 2 & 2 & 2 & a & a & a & na & e & p \\ r & r & r^2 & r^3 & e & p & p & e & pq & q \\ r & r & r & r^2 & r^3 & e & p & p & e & pq & q \\ r & r & r & r & r & r & r & r \\ r & r &$	B2	For correct table for K	
			$\begin{bmatrix} r^2 & r^2 & r^3 & e & r & q & q & pq & e & p \\ r^3 & r^3 & e & r & r^2 & pq & pq & q & p & e \end{bmatrix}$	[4]	SR In both tables allow B1 for 1 or 2 errors	
4	(ii)		Identity = b	B1	For correct identity	
4	(iii)		<i>G</i> is isomorphic to <i>H</i>	B1	For <i>H</i> identified as isomorphic to <i>G</i> (may be implied by table)	
			$\begin{array}{c c c} G & H & H \\ \hline a & r^2 & r^2 \\ \hline \end{array}$	B1	For $a \leftrightarrow r^2$ at least once	
			b e e $c r r^3$	B1	For $c, d \leftrightarrow r, r^3$ either way	
			$d \mid r^3 \mid r$	B1	For $c, d \leftrightarrow r, r^3$ both ways and b corresponds to e explicit. Award fourth B1 only for completely correct answer. If none of last 3 marks gained, then SC1 for order of all elements of G and H	
_				[4]		
5	(1)		$\operatorname{METHOD} 1$ $\sin^{3}\theta\cos^{2}\theta = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{3} \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{2}$	B1	z may be used for $e^{i\theta}$ throughout For $\left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right) OR \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)$ soi	
			$= -\frac{1}{32i} \left(z^3 - 3z + 3z^{-1} - z^{-3} \right) \left(z^2 + 2 + z^{-2} \right)$	M1	For expanding brackets (binomial theorem or otherwise)	
				M1 B1	For full expansion with 12 terms. For $-\frac{1}{32i}$	two brackets expanded soi by alternate method
			$= -\frac{1}{32i} \left(\left(z^5 - z^{-5} \right) - \left(z^3 - z^{-3} \right) - 2 \left(z - z^{-1} \right) \right)$	M1	For grouping terms	Can be seen at any stage
			$= -\frac{1}{16} \left(\frac{z^5 - z^{-5}}{2i} - \frac{z^3 - z^{-3}}{2i} - 2\frac{z - z^{-1}}{2i} \right)$		This step, oe, is needed for the final mark	oe includes replacing z^5 - z^{-5} with 2isin50 etc
			$=-\frac{1}{16}(\sin 5\theta - \sin 3\theta - 2\sin \theta)$	A1	For simplification to AG www	
				[6]		

4727

Q	Question		Answer		Guidance	
			METHOD 2			
			$\sin^3\theta\cos^2\theta = \sin^3\theta - \sin^5\theta$			
			$2i\sin\theta = z - \frac{1}{z}$	B1		
			$-8i\sin^{3}\theta = z^{3} - 3z + \frac{3}{z} - \frac{1}{z^{3}}$	M1	For RHS	
			$=(z^{3}-\frac{1}{z^{3}})-(3z-\frac{3}{z})$		*	
			$=2i\sin 3\theta - 6i\sin \theta$			
			$32i\sin^5\theta = z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$			
			$=(z^{5}-\frac{1}{z^{5}})-(5z^{3}-\frac{5}{z^{3}})+(10z-\frac{10}{z})$	M1	For grouping terms	
			$= 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin \theta$	B1	For RHS of this line and line * above	
			$\sin^3\theta\cos^2\theta$			
			$= -\frac{1}{32i}(4(2is3\theta - 6is\theta) + (2is5\theta - 10is3\theta + 20is\theta))$	B1	For $-\frac{1}{32i}$	
			$= -\frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 4\sin 3\theta + 10\sin \theta - 12\sin \theta)$			
			$= -\frac{1}{16}(\sin 5\theta - \sin 3\theta - 2\sin \theta)$	A1	For ag www	
5	(jij)			M1	For either equation	Can be implied by the
3	(11)		$\sin^3 \theta \cos^2 \theta = 0 \implies \sin \theta = 0 \ OR \ \cos \theta = 0$	1011	Accept also $\sin\theta = \pm/-1$	A mark plus at least
			\rightarrow sinv = 0 on cosv = 0			$\sin^3\theta = 0$ or similar.
			$\Rightarrow \theta = r \pi \ OR \ \theta = (2r+1)\frac{1}{2}\pi$	A1	For either solution, AEF including a list of the first few	At least 2 in list
						(and no wrong
				Λ 1	For both of above colutions leading to concern colution in	solution)
			$\Rightarrow \theta = \frac{n\pi}{2}$	AI	form of AG where $k = 2$	
			_	[3]		

4727

	Questio	0 n	Answer	Marks	Guidance	
6	(i)		METHOD 1			
			$m^2 + 4m = 0 \implies m = 0, -4$	M1	For attempt to solve correct auxiliary equation	
			$CF = A + Be^{-4x}$	A1	For correct CF	
			PI $y = pe^{2x} \implies 4p + 8p = 12$	B1	For PI of correct form seen	Beware poor use of
				N/1	For differentiations DI and anti-stitutions	pxe ^{2x}
			$\rightarrow n-1$	A1	For correct <i>n</i>	of M1 A1 B0 M1
				B1 FT	For using $GS = CF + PI$ with 2 arbitrary constants in GS and	A0 R0
			dd y = A + be + e	DIII	none in PI	
				[6]		
			METHOD 2	N/1	For attained to intermete a mostion	
			Integrating $\Rightarrow \frac{dy}{dx} + 4y = 6e^{2x} + c$	B1	For attempt to integrate equation $F_{or} + c$ included	
			$d (4\pi) = 6\pi$	B1√	For correct IF ft from their DE	
			IF $e^{4x} \Rightarrow \frac{d}{dx}(ye^{4x}) = 6e^{6x} + ce^{4x}$	M1	For multiplying through by their IF and attempting to integrate	
			$\Rightarrow y e^{4x} = e^{6x} + \frac{1}{4}c e^{4x} + B$	A1	For correct integration both sides, including $+B$	
			$\Rightarrow y = e^{2x} + A + Be^{-4x}$	A1	For correct solution	Must include "y ="
6	(ii)		$dy = 4P_0^{-4x} + 2e^{2x}$	M1	For differentiating "their GS" with 2 arbitrary constants and	If "their CF" is
			$\frac{dx}{dx} = -4Be$ + 2e		substituting values to obtain an equation	$(A+Bx)e^{-4x}$
			$\left(0 \frac{dy}{dy} - 6\right) \rightarrow -4B + 2 - 6 \rightarrow B = -1$	A1	For correct B	can score max of
			$\begin{pmatrix} 0, dx \end{pmatrix} \rightarrow \forall B + 2 = 0 \Rightarrow B = 1$			M1 A0 B1 A0
			$(y \approx e^{2x} \Longrightarrow)A = 0$	B1	For correct A and consistent with" their GS"	
			$\Rightarrow y = -e^{-4x} + e^{2x}$	A1	For correct equation www	
				[4]		
7	(i)		$\mathbf{m} = \mathbf{v} + \frac{1}{2} (\mathbf{w} - \mathbf{v}) \Longrightarrow$	M1	For using vector triangle, or equivalent, for M	$\overrightarrow{UM} = \overrightarrow{UV} + \overrightarrow{VM}$
						$-(y - u) + \frac{1}{2}(w - y)$
						$=(\mathbf{v} - \mathbf{u}) + \frac{1}{2}(\mathbf{w} - \mathbf{v})$
				Δ1	For correct expression AC	
			$U\dot{M} = \mathbf{v} + \frac{1}{2}(\mathbf{w} - \mathbf{v}) - \mathbf{u} = \frac{1}{2}(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$			
					SR Allow use of ratio theorem	Minimum
				[2]		$-\mathbf{u} + \frac{1}{2}(\mathbf{v} + \mathbf{w})$

4727

(Question		Answer	Marks	Guidance		
7	(ii)		METHOD 1 (first 3 marks)				
			\overrightarrow{UM} is $\mathbf{r} = \mathbf{u} + \frac{1}{2}t(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$	M1*	For equation of UM		
				M1*	For attempt to find a suitable value of t		
			$t = \frac{2}{3} \implies \mathbf{u} + \frac{1}{3} (\mathbf{v} + \mathbf{w} - 2\mathbf{u}) = \frac{1}{3} (\mathbf{u} + \mathbf{v} + \mathbf{w})$	A1	For $t = \frac{2}{3}$ and G obtained AG		
			METHOD 2 (first 3 marks)				
			$\overrightarrow{UG} = \frac{1}{2}(\mathbf{u} + \mathbf{v} + \mathbf{w}) - \mathbf{u} = \frac{1}{2}(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$	M1*	For finding directions of UG or MG		
			OP	M1*	For comparing with UM		
			\rightarrow 1/ \rightarrow 1/ \rightarrow 1/				
			$MG = \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) - \frac{1}{2}(\mathbf{v} + \mathbf{w}) = -\frac{1}{6}(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$				
			$\Rightarrow U, G, M$ collinear	A1	For showing G lies on UM AG		
			By symmetry of \overrightarrow{OG} in u , v , w	B1	For use of symmetry, or by repeating method for UM twice more		
			G also lies on VN, WP	B1dep	For complete reasoning to AG		
			\Rightarrow UM, VN, WP intersect at G	*			
7	(;;;)			[5]			
/	(111)		Line is $\mathbf{r} = \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) + t(\mathbf{u} - \mathbf{v}) \times (\mathbf{u} - \mathbf{w})$ (etc)	B1	For $r = \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) + t \times$ "any vector"		
				B1	For a correct n , using any 2 of \pm (u - v), \pm (v - w), \pm (w - u)	Allow	
						$\overrightarrow{UV} \times \overrightarrow{VW}$ or	
				[2]		similar	
1	1	1		4			

4727

	Question	Answer		Guidance	
7	(iv)	METHOD 1 $\mathbf{n} = [1, 0, -1] \times [0, 1, -1] (\text{etc}) = k[1, 1, 1]$	M1*	For attempt to find n	May see use of $\frac{ p.n-d }{ n }$
		UVW is $\mathbf{r.n} = [1, 0, 0] \cdot [1, 1, 1] = 1$	M1dep	For substituting a point	
		$\Rightarrow d = \frac{1}{\sqrt{3}}$	A1	For correct <i>d</i>	
		METHOD 2 UVW is $x+y+z=1$ (from given $\mathbf{u}, \mathbf{v}, \mathbf{w}$) $\Rightarrow d = \frac{1}{\sqrt{3}}$ METHOD 3	[3] M2 A1	For attempt to find cartesian equation For correct d	
		$\overrightarrow{OG} = \frac{1}{3} (\mathbf{u} + \mathbf{v} + \mathbf{w})$	M1*	For stating or implying $ \overrightarrow{OG} $ is d	
		$\Rightarrow OG = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{1}{9}}$	M1dep *	For finding magnitude	
		$\Rightarrow d = \frac{1}{\sqrt{3}}$	A1	For correct <i>d</i>	

4727

(Questio	n	Answer	Marks	Guidance	
8	(i)		For R, $\cos^2 \theta + \sin^2 \theta = 1 \Rightarrow \text{ad-bc} = 1 (\Rightarrow R \subset M)$	B1	For showing $R \subset M$	
			$R(\theta)R(\phi) = R(\theta + \phi)$ and hence closed, since	M1	For multiplying 2 distinct elements	
			$\cos\theta\cos\phi - \sin\theta\sin\phi = \cos(\theta + \phi)$ and			
			$\pm (\cos\theta\sin\phi + \sin\theta\cos\phi) = \pm\sin(\theta + \phi)$	A1	For obtaining $R(\theta)R(\phi) \in R$	Must demonstrate use of compound angles or explain rotations.
			Identity $\theta = 0 \Longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in R$	B1	For identity element related to $\theta = 0$	
			Inverse $R(-\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$	B1	For inverse element	
			$= \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$	B1	converted to form of elements of R	
				[6]		
			SR For use of $(a, b \in R \Rightarrow ab^{-1} \in R) \Leftrightarrow R$ is a			
			subgroup of <i>M</i>			
			For R, $\cos^2 \theta + \sin^2 \theta = 1 \implies R \subset M$	B1	For showing $R \subset M$	
			$R(\theta)R(\phi)^{-1} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \cdot & \theta \end{pmatrix} \begin{pmatrix} \cos(-\phi) & -\sin(-\phi) \\ \cdot & \theta \end{pmatrix}$	B1	For considering $R(\theta)R(\phi)^{-1}$	
			$(\sin\theta \cos\theta)(\sin(-\phi)\cos(-\phi))$	B1	For correct inverse	
			$\left(\cos(\theta, \phi), \sin(\theta, \phi) \right)$		For multiplying elements	
			$= \begin{pmatrix} \cos(\theta - \phi) & -\sin(\theta - \phi) \\ \sin(\theta - \phi) & \cos(\theta - \phi) \end{pmatrix} \in R$			
			Set is non-empty	B1	Can be implied by identity element related to $\theta = 0$	

4727

(Question		Answer		Guidance	
8	(ii)		For $\theta = \frac{1}{3}k\pi$ elements are	B1	For $\theta = \frac{1}{3}\pi$ soi	Allow degrees instead of radians.
			$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}, \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix},$	M1	For using "their θ " in $\begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix}$ for at least 2 values of <i>k</i> , or lists all 6 values of θ	
			$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}$	A1 A1 A1 [5]	For identity and one other element other than (-I) For 2 more elements For all 6 elements correct	